The COW-Gas (Cal pOly Winter Gas) Campaign: Continuous Mobile and Stationary Methane Monitoring by In Situ and Column Measurements at the Cal Poly Research Dairy Sam Vigil¹, Ira Leifer², Elena Berman³, Clement Chang⁴, Jason Frash², Jeffery Hall⁴, Laura Iraci⁵, Brian Leen³, Tryg Lundquist¹, Chris Melton², David Tratt⁴, and Emily Wilson⁶ ¹California Polytechnic State Univ. (Cal Poly), San Luis Obispo, CA; ²Bubbleology Research Intnl. (BRI), Solvang, CA; ³Los Gatos Research (LGR), Mountain View, CA; ⁴The Aerospace Corp., El Segundo, CA; ⁵NASA Ames Research Center (ARC), Moffitt Field, CA; ⁶NASA Goddard Space Flight Center (GSFC), Greenbelt, MD The Cal Poly Research Dairy, is located on the California Polytechnic State University campus in San Luis Obispo, California, with 300 head during the campaign. It is well-isolated from other dairies and other significant CH₄ sources. Feed barns are flushed four times a day into a waste lagoon with an overflow lagoon to the east. #### AMOG CH4 AMOG measured consistent winds during the afternoon with highly elevated NH_3 and CH_4 from the feed barns and waste lagoon (aerator), and a strong NH_3 plume from downwind of the milking barn. The strongest NH3 was observed near the milking station by AMOG (and RamVan), where high methane values also were observed. The difficulty of *in situ* NH₃ measurements is highlighted by the "latency" of the NH₃ signal on the arrival/departure transits due to its molecular "stickiness." Preliminary (Cloud Uncorrected, uncalibrated) mini-LHR CH₄ column during COWGAS showing a steady decrease in emission strength consistent with decreasing emissions after a noted mid-day waste flushing. Chino Dairy Complex, Los Angeles Basin, showing AMOG CH₄ and airborne TIR-derived column NH₃ by the Mako imaging spectrometer (Aerospace Corp.) ### **Experimental Methods** In situ surface data were collected by the AMOG (Automobile Greenhouse Gas) Surveyor Vehicle (BRI) with several Off-Axis Integrated Cavity Output Spectroscopy instruments (LGR) that measured CH₄, CO₂, H₂O, NH₃, and NO₂. A CO₂ isotope instrument (LGR) was installed in the MACLab Recreational Vehicle. Airborne in situ data were collected by the the AlphaJet aircraft (ARC) with a Cavity Ring Down Spectrometer (Picarro) for CH₄, CO₂, and H₂O. Column measurements were made by the Aerospace Corp. RamVan Mobile Laboratory with a zenith viewing FTIR Spectrometer for CH₄ and NH₃. Additional CH₄ column measurements were made by the Miniaturized--Laser Heterodyne Radiometer (Mini-LHR) (developed by GSFC). AlphaJet captures by airborne *in situ* measurements the dynamics of the methane plume, several kilometers downwind (onboard measure) of the Cal Poly Dairy, also mapping the boundary layer at ~900 m height. Surface winds were from Northwest. ### **Findings** In Situ CH₄ and NH₃ plumes were successfully mapped by AMOG and were spatially segregated on a sub-dairy scale. In Situ CH₄ and NH₃ plume ratios varied spatially with distinct signatures related to dairy operations. The waste lagoon was a major emission source with its strongest emissions focused on the aerator. In Situ NH₃ and CH₄ strong plumes correlated with strong mobile NH₃ column measurements from RamVan. The CH₄ plume from the Cal Poly Dairy was mapped by the Alphajet (NASA ARC) during multiple transects ~5-km downwind. A very strong column CH₄ plume was observed by the Mini-LHR (NASA GSFC) ~250 m downwind from the dairy feed barns and waste lagoon. COWGAS demonstrated that the controlled, accessible, and well described environment of a research dairy can greatly aid in the interpretation of commercial dairy CH₄ and NH₃ emission data, linking dairy operations and emissions, enabling smarter dairy operations. ## HyspIRI Science and Applications Workshop, 14 to 16 October 2014 Cal Tech, Pasadena, CA